Luogu P3435
[POI2006] OKR-Periods of Words
题面翻译
对于一个仅含小写字母的字符串 \(a\),\(p\) 为 \(a\) 的前缀且 \(p\ne a\),那么我们称 \(p\) 为 \(a\) 的 proper 前缀。
规定字符串 \(Q\) 表示 \(a\) 的周期,当且仅当 \(Q\) 是 \(a\) 的 proper 前缀且 \(a\) 是 \(Q+Q\) 的前缀。若这样的字符串不存在,则 \(a\) 的周期为空串。
例如
ab是abab的一个周期,因为ab是abab的 proper 前缀,且abab是ab+ab的前缀。求给定字符串所有前缀的最大周期长度之和。
题目描述
A string is a finite sequence of lower-case (non-capital) letters of the English alphabet. Particularly, it may be an empty sequence, i.e. a sequence of 0 letters. By A=BC we denotes that A is a string obtained by concatenation (joining by writing one immediately after another, i.e. without any space, etc.) of the strings B and C (in this order). A string P is a prefix of the string !, if there is a string B, that A=PB. In other words, prefixes of A are the initial fragments of A. In addition, if P!=A and P is not an empty string, we say, that P is a proper prefix of A.
A string Q is a period of Q, if Q is a proper prefix of A and A is a prefix (not necessarily a proper one) of the string QQ. For example, the strings abab and ababab are both periods of the string abababa. The maximum period of a string A is the longest of its periods or the empty string, if A doesn't have any period. For example, the maximum period of ababab is abab. The maximum period of abc is the empty string.
Task Write a programme that:
reads from the standard input the string's length and the string itself,calculates the sum of lengths of maximum periods of all its prefixes,writes the result to the standard output.
输入格式
In the first line of the standard input there is one integer \(k\) (\(1\le k\le 1\ 000\ 000\)) - the length of the string. In the following line a sequence of exactly \(k\) lower-case letters of the English alphabet is written - the string.
输出格式
In the first and only line of the standard output your programme should write an integer - the sum of lengths of maximum periods of all prefixes of the string given in the input.
样例 #1
样例输入 #1
8 babababa样例输出 #1
24
先理解清楚题意:proper前缀可以配合下图理解 
因为题目是求所有前缀的最大周期长度之和,所以我们令\(j=i+1\)。(因为我个人的KMP写得比较奇怪,题解区的大佬是令\(j=i\))。然后在\(j>0\)的情况下不断令\(j=pmt[j-1]\),直到\(j\)最小为止。此时\(ans+=i-j+1\)。 这里有一个技巧:当\(j\)求出来后,令\(pmt[i]=j\),相当于记忆化,否则可能会T。
思路参考:https://www.luogu.com.cn/problem/solution/P3435
贴一下代码:
|
